Asymptotically Stable Multi-valued Many-to-many Associative Memory Neural Network and Its Application in Image Retrieval

نویسندگان

  • Lei Chen
  • Geng Yang
  • Yingzhou Zhang
  • Chuandong Wang
  • Zhen Yang
چکیده

As an important artificial neural network, associative memory model can be employed to mimic human thinking and machine intelligence. In this paper, first, a multi-valued many-to-many Gaussian associative memory model (MGAM) is proposed by introducing the Gaussian unidirectional associative memory model (GUAM) and Gaussian bidirectional associative memory model (GBAM) into Hattori et al’s multi-module associative memory model ((MMA)). Second, the MGAM’s asymptotical stability is proved theoretically in both synchronous and asynchronous update modes, which ensures that the stored patterns become the MGAM’s stable points. Third, by substituting the general similarity metric for the negative squared Euclidean distance in MGAM, the generalized multivalued many-to-many Gaussian associative memory model (GMGAM) is presented, which makes the MGAM become its special case. Finally, we investigate the MGAM’s application in association-based image retrieval, and the computer simulation results verify the MGAM’s robust performance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

کاهش رنگ تصاویر با شبکه‌های عصبی خودسامانده چندمرحله‌ای و ویژگی‌های افزونه

Reducing the number of colors in an image while preserving its quality, is of importance in many applications such as image analysis and compression. It also decreases memory and transmission bandwidth requirements. Moreover, classification of image colors is applicable in image segmentation and object detection and separation, as well as producing pseudo-color images. In this paper, the Kohene...

متن کامل

A Radon-based Convolutional Neural Network for Medical Image Retrieval

Image classification and retrieval systems have gained more attention because of easier access to high-tech medical imaging. However, the lack of availability of large-scaled balanced labelled data in medicine is still a challenge. Simplicity, practicality, efficiency, and effectiveness are the main targets in medical domain. To achieve these goals, Radon transformation, which is a well-known t...

متن کامل

Design of Multi-valued Cellular Neural Networks for Associative Memories

Cellular neural networks (CNNs) are one type of interconnected neural network and differ from the well-known Hopfield model in that each cell has a piecewise linear output function. In this paper, we present a multi-valued CNN model in which each nonlinear element consists of a multi-valued output function. The function is defined by a linear combination of piecewise linear functions. We conduc...

متن کامل

Robust image retrieval from noisy inputs using lattice associative memories

Lattice associative memories also known as morphological associative memories are fully connected feedforward neural networks with no hidden layers, whose computation at each node is carried out with lattice algebra operations. These networks are a relatively recent development in the field of associative memories that has proven to be an alternative way to work with sets of pattern pairs for w...

متن کامل

A Modified Grasshopper Optimization Algorithm Combined with CNN for Content Based Image Retrieval

Nowadays, with huge progress in digital imaging, new image processing methods are needed to manage digital images stored on disks. Image retrieval has been one of the most challengeable fields in digital image processing which means searching in a big database in order to represent similar images to the query image. Although many efficient researches have been performed for this topic so far, t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014